Abstract

This paper addresses a multi-period production/inventory problem with two suppliers, where demand sizes and supplier lead time are stochastic and correlated. A discrete time, single item inventory system is considered, where inventory levels are reviewed periodically and managed using a base-stock policy. At the end of each period, a replenishment order is placed, which enters a queue at the buffer stage and is consequently forwarded to the first available supplier. We present a mathematical model of this inventory system and determine optimal safety stock levels for it, in closed form, using matrix analytic techniques and the properties of phase type distributions. To account for the effect of order crossovers, which occur whenever replenishment orders do not arrive in the sequence in which they were placed, the inventory shortfall distribution is analyzed. Finally, a set of numerical experiments with a system with two suppliers is presented, where the proposed model is compared to other existing models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call