Abstract
This research systematically compares the effectiveness of Carbon Fiber-Reinforced Polymer (FRP) and Fabric-Reinforced Cementitious Matrix (FRCM) in shear strengthening of reinforced concrete (RC) deep beams featuring web openings. Through a comprehensive experimental program, six RC beams were subjected to shear tests, considering variations in the number of layers for both FRCM and FRP, employing a U-wrapping configuration. Recorded parameters include load-deflection curves, ultimate strength, cracking patterns, failure modes, and strains in steel bars, allowing a comprehensive comparison between strengthened and un-strengthened RC beams. The study compares observed shear strengths from experiments with shear capacities predicted by proposed models for RC beams strengthened with FRCM and FRP, following codes such as ACI 440.2R-17, CSA S806-12, Eurocode 2, and ACI 549.4R-20. Increasing layers enhanced shear strengths and post-elastic stiffness. The presence of substantial openings led to early shear cracks and reduced strength. CFRP improved shear strength by 13.99% (1-layer) and 18.12% (2-layer), while FRCM strengthened layers by 20.2% (1 layer) and 29.3% (2 layers). FRCM outperformed in strength and stiffness, while FRP excelled in ductility and concrete confinement. Experimental and calculated results varied based on ACI, CSA, and Eurocode, with ACI providing consistent and accurate results. CSA’s calculation surpassed experiments, emphasizing its consideration of effective fabric design strain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.