Abstract
Mangroves are the highly productive and extensive ecosystem in the tropical coasts. Chlorophyll is the key foliar determinant of mangrove productivity. Optical characteristics of mangrove markedly differ from land vegetation; hence, defining narrowband spectral indices most sensitive to mangrove chlorophyll is crucial, in view of their importance to the coastal environment and mounting biotic pressures. We assessed the sensitivity of a set of satellite hyperspectral remote sensing indices to mangrove canopy chlorophyll in Middle Andaman Island, India, and propose most robust spectral indices for mangrove chlorophyll estimation. We generated simple, modified simple, normalized difference vegetation, and non-linear indices from all possible two band combinations of EO-1 Hyperion bands in the 500-900nm spectral range. The strength of correlation between each pair of spectral indices to mangrove chlorophyll was analyzed in 2D correlograms and validated using k-fold cross-validation technique. Results show that 549 nm,559nm (green) and 702nm, 722nm, 742nm, and 763nm (red-edge) wavelengths are the most sensitive to mangrove chlorophyll. We report performance of traditional chlorophyll indices and new indices with higher predictive capability for mangrove chlorophyll prediction. Simple ratio (559nm/885nm) offered the strongest correlation with mangrove chlorophyll (R2-0.75, RMSE-0.60, p < 0.05). Study findings will help researchers in deciding suitable chlorophyll indices for mangrove productivity and stress assessment. The best calibrated index was used to prepare mangrove chlorophyll spatial variability map of the study area.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.