Abstract
We seek to understand if an automated algorithm can replace human scoring of surgical trainees performing the urethrovesical anastomosis in radical prostatectomy with synthetic tissue. Specifically, we investigate neural networks for predicting the surgical proficiency score (GEARS score) from video clips. We evaluate videos of surgeons performing the urethral anastomosis using synthetic tissue. The algorithm tracks surgical instrument locations from video, saving the positions of key points on the instruments over time. These positional features are used to train a multi-task convolutional network to infer each sub-category of the GEARS score to determine the proficiency level of trainees. Experimental results demonstrate that the proposed method achieves good performance with scores matching manual inspection in 86.1% of all GEARS sub-categories. Furthermore, the model can detect the difference between proficiency (novice to expert) in 83.3% of videos. Evaluation of GEARS sub-categories with artificial neural networks is possible for novice and intermediate surgeons, but additional research is needed to understand if expert surgeons can be evaluated with a similar automated system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.