Abstract

Natural disasters are projected to increase in number and severity, in part due to climate change. At the same time a growing number of disaster risk reduction (DRR) and climate change adaptation measures are being implemented by governmental and non-governmental organizations, and substantial post-disaster donations are frequently pledged. At the same time there has been increasing demand for transparency and accountability, and thus evidence of those measures having a positive effect. We hypothesized that resilience-enhancing interventions should result in less damage during a hazard event, or at least quicker recovery. In this study we assessed recovery over a 3 year period of seven municipalities in the central Philippines devastated by Typhoon Haiyan in 2013. We used very high resolution optical images (<1 m), and created detailed land cover and land use maps for four epochs before and after the event, using a machine learning approach with extreme gradient boosting. The spatially and temporally highly variable recovery maps were then statistically related to detailed questionnaire data acquired by DEval in 2012 and 2016, whose principal aim was to assess the impact of a 10 year land-planning intervention program by the German agency for technical cooperation (GIZ). The survey data allowed very detailed insights into DRR-related perspectives, motivations and drivers of the affected population. To some extent they also helped to overcome the principal limitation of remote sensing, which can effectively describe but not explain the reasons for differential recovery. However, while a number of causal links between intervention parameters and reconstruction was found, the common notion that a resilient community should recover better and more quickly could not be confirmed. The study also revealed a number of methodological limitations, such as the high cost for commercial image data not matching the spatially extensive but also detailed scale of field evaluations, the remote sensing analysis likely overestimating damage and thus providing incorrect recovery metrics, and image data catalogues especially for more remote communities often being incomplete. Nevertheless, the study provides a valuable proof of concept for the synergies resulting from an integration of socio-economic survey data and remote sensing imagery for recovery assessment.

Highlights

  • The average annual global economic damage caused by disasters is difficult to determine, with estimations ranging from about 300 billion US$ [1,2] to more than 520 billion US$ [3]

  • We considered post-disaster recovery to be a proxy for resilience, and used remote sensing (RS) to detect evidence of spatially variable recovery, which we statistically linked to interventions in different municipalities

  • Barangay 69 (0.38 km2 in size), located in the North of Tacloban (Figure 2) was selected to visualize the analysis and explain the results in detail for each step. This barangay contains most of the LCLU classes, in addition to some representative challenges/inaccuracies we encountered during the classification and providing the final recovery assessment results

Read more

Summary

Introduction

The average annual global economic damage caused by disasters is difficult to determine, with estimations ranging from about 300 billion US$ [1,2] to more than 520 billion US$ [3]. It is widely accepted that economic consequences will be both severe and spatially highly variable [6,7]. Substantial uncertainty in those predictions is linked to the likely extent and effect of climate change adaptation (CCA) and disaster risk reduction (DRR) measures. The European Union announced plans in the 2009 Copenhagen Accord to invest 100 billion US$ annually by 2020 in CCA measures in developing countries. The work plan of virtually every official development assistance (ODA) agency includes a wide array of interventions to reduce disaster risk and the effects of climate change, aiming at fostering greater resilience

Objectives
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.