Abstract
We present a data processing approach based on the spectral dot product for evaluating spectral similarity and reproducibility. The method introduces 95% confidence intervals on the spectral dot product to evaluate the strength of spectral correlation; it is the only calculation described to date that accounts for both the non-normal sampling distribution of the dot product and the number of peaks the spectra have in common. These measures of spectral similarity allow for the recursive generation of a consensus spectrum, which incorporates the most consistent features from statistically similar replicate spectra. Taking the spectral dot product and 95% confidence intervals between consensus spectra from different samples yields the similarity between these samples. Applying the data analysis scheme to replicates of brain tubulin CNBr peptides enables a robust comparison of tubulin isotype expression and post-translational modification patterns in rat and cow brains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the American Society for Mass Spectrometry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.