Abstract

Many healthcare organizations follow data protection policies that specify which patient identifiers must be suppressed to share "de-identified" records. Such policies, however, are often applied without knowledge of the risk of "re-identification". The goals of this work are: (1) to estimate re-identification risk for data sharing policies of the Health Insurance Portability and Accountability Act (HIPAA) Privacy Rule; and (2) to evaluate the risk of a specific re-identification attack using voter registration lists. We define several risk metrics: (1) expected number of re-identifications; (2) estimated proportion of a population in a group of size g or less, and (3) monetary cost per re-identification. For each US state, we estimate the risk posed to hypothetical datasets, protected by the HIPAA Safe Harbor and Limited Dataset policies by an attacker with full knowledge of patient identifiers and with limited knowledge in the form of voter registries. The percentage of a state's population estimated to be vulnerable to unique re-identification (ie, g=1) when protected via Safe Harbor and Limited Datasets ranges from 0.01% to 0.25% and 10% to 60%, respectively. In the voter attack, this number drops for many states, and for some states is 0%, due to the variable availability of voter registries in the real world. We also find that re-identification cost ranges from $0 to $17,000, further confirming risk variability. This work illustrates that blanket protection policies, such as Safe Harbor, leave different organizations vulnerable to re-identification at different rates. It provides justification for locally performed re-identification risk estimates prior to sharing data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.