Abstract
The quest to create a vaccine for covid-19 has rekindled hope for most people worldwide, with the anticipation that a vaccine breakthrough would be one step closer to the end of the deadly Covid-19. The pandemic has had a bearing on the use of Twitter as a communication medium to reach a wider audience. This study examines Covid-19 vaccine-related discussions, concerns, and Twitter emerged sentiments about Covid-19 vaccine rollout program. Natural Language Processing (NLP) techniques were applied to analyze Covid-19 vaccine-related tweets. Our analysis identified popular n-grams and salient themes such as "vaccine health information," "vaccine distribution and administration," "vaccine doses required for immunity," and "vaccine availability." We apply machine learning algorithms and evaluate their performance using the standard metrics, namely accuracy, precision, recall, and f1-score. Support Vector Machine (SVM) classifier proves to be the best fit on the dataset with 84.32% accuracy. The research demonstrates how Twitter data and machine learning methods can study the evolving public discussions and sentiments concerning the Covid-19 vaccine rollout program
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.