Abstract
To unscramble the relationship between protein function and protein structure, it is essential to assess the protein similarity from different aspects. Although many methods have been proposed for protein structure alignment or comparison, alternative similarity measures are still strongly demanded due to the requirement of fast screening and query in large-scale structure databases. In this paper, we first formulate a novel representation of a protein structure, i.e., Feature Sequence of Surface (FSS). Then, a new score scheme is developed to measure the similarity between two representations. To verify the proposed method, numerical experiments are conducted in four different protein data sets. We also classify SARS coronavirus to verify the effectiveness of the new method. Furthermore, preliminary results of fast classification of the whole CATH v2.5.1 database based on the new macrostructure similarity are given as a pilot study. We demonstrate that the proposed approach to measure the similarities between protein structures is simple to implement, computationally efficient, and surprisingly fast. In addition, the method itself provides a new and quantitative tool to view a protein structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM Transactions on Computational Biology and Bioinformatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.