Abstract
We investigate the predictive performance of various classes of value-at-risk (VaR) models in several dimensions—unfiltered versus filtered VaR models, parametric versus nonparametric distributions, conventional versus extreme value distributions, and quantile regression versus inverting the conditional distribution function. By using the reality check test of White (2000), we compare the predictive power of alternative VaR models in terms of the empirical coverage probability and the predictive quantile loss for the stock markets of five Asian economies that suffered from the 1997–1998 financial crisis. The results based on these two criteria are largely compatible and indicate some empirical regularities of risk forecasts. The Riskmetrics model behaves reasonably well in tranquil periods, while some extreme value theory (EVT)-based models do better in the crisis period. Filtering often appears to be useful for some models, particularly for the EVT models, though it could be harmful for some other models. The CaViaR quantile regression models of Engle and Manganelli (2004) have shown some success in predicting the VaR risk measure for various periods, generally more stable than those that invert a distribution function. Overall, the forecasting performance of the VaR models considered varies over the three periods before, during and after the crisis. Copyright © 2006 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Forecasting
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.