Abstract

Polythiophenes comprise a class of emerging materials with potential applications in the field of temperature sensing. In this article, we validate and apply an integrated blending and printing methodology to combinatorially study libraries of pristine and compositionally graded blends of polythiophenes PEDOT:PSS and P(S-EDOT) (a PEDOT-like self-doped conjugated polymer) to understand their intrinsic electrical conductivity behaviour and along with its temperature dependence on blend composition and ambient temperature. Hypothesis testing is conducted to identify optima in electrical conductivity from combinations of input material proportions intended to meet multiple requirements otherwise difficult to achieve in any single-component solution-processable material. We chose PEDOT:PSS as a commercial developed intrinsically conductive polythiophene and with it, compared a novel self-doped polythiophene P(S-EDOT) as its potential replacement or complement as a sensor material. The electrical and morphological characteristics for both polymers and their blends were investigated for use as different components of temperature sensing applications. Different error sources within the process flow were considered for statistically significant conclusions regarding the utility of different compositions for different aspects of temperature sensing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.