Abstract

The identification of critical source areas (CSAs) and critical source periods (CSPs) are essential prerequisites for cost-effective practices of non-point source (NPS) pollution control. A simple empirical tool combining Export Coefficient Model (ECM) and a Geographic Information Systems (GIS)-based weighting scheme of watershed heterogeneity was proposed to estimate annual and monthly phosphorus loss, to identify critical source areas and periods, and to assess pollution control practices. The GIS-based weighting scheme was developed to represent the transport potential of runoff to move phosphorus from the land surfaces to waters, as a supplement to the source-based ECM. The empirical tool was applied to the Dianchi Lake watershed of China. The results showed that the total phosphorus loss from NPS in 2008 was 352.3 tons. The agricultural land was recognized as the largest and the most spatially various source type. The lakeside plain and the terraces of the watershed were identified as CSAs, which generated more than 90 % of non-point phosphorus. The early part of wet season (from May to August) was the CSPs, when about 70 % of non-point phosphorus was lost. The reduction of phosphorus fertilizers and the vegetated buffer strips (VBS) were effective in controlling phosphorus loss from NPS in the watershed. A reduction of 20 % in phosphorus fertilizer application combined with the set-up of VBS in both riparian area of the main watercourses and the lakeside areas would decrease 25 % of phosphorus loss.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.