Abstract
Scalable persistent memory (PM) has opened up new opportunities for building indexes that operate and persist data directly on the memory bus, potentially enabling instant recovery, low latency and high throughput. When real PM hardware (Intel Optane Persistent Memory) first became available, previous work evaluated PM indexes proposed in the pre-Optane era. Since then, newer indexes based on real PM have appeared, but it is unclear how they compare to each other and to previous proposals, and what further challenges remain. This paper addresses these issues by analyzing and experimentally evaluating state-of-the-art PM range indexes built for real PM. We find that newer designs inherited past techniques with new improvements, but do not necessarily outperform pre-Optane era proposals. Moreover, PM indexes are often very competitive with or even outperform indexes tailored for DRAM, highlighting the potential of using a unified design for both PM and DRAM. Functionality-wise, these indexes still lack good support for variable-length keys and handling NUMA effect. Based on our findings, we distill new design principles and highlight future directions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.