Abstract

Granular activated carbon (GAC) was harvested from six filter-adsorbers that are used for taste and odour control in three drinking water treatment plants in Ontario, Canada, and evaluated for the removal of perfluorooctanic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) using minicolumn tests under different operational conditions. Parallel column tests were conducted using unsterilized GAC and sterilized GAC to distinguish adsorption from potential biodegradation of PFOA and PFOS across the GAC. It was observed that the GAC could achieve approximately 20% to 55% of PFOA and PFOS removal even after a long period of GAC operation (e.g., 6 years). There was no evidence of PFOA and PFOS biodegradation, so the removal in GAC can be attributed solely to adsorption under the conditions tested. However, in one location, there was evidence suggesting both removal and formation of PFOS and PFOA across the GAC, with the formation presumably due to the biotransformation of pre-existing precursors in the source water. Additionally, GAC service time and empty bed contact time (EBCT) were identified to be important factors that could affect the removal of PFOA and PFOS. Based on this information, an empirical model was proposed to predict PFOA and PFOS removal in GAC filter-adsorbers as a function of GAC service time and EBCT. This study provides useful information for utilities that have installed GAC for taste and odour control but may consider per- and polyfluoroalkyl substances (PFAS) removal as an additional voluntary objective or due to more stringent guidelines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.