Abstract

Abstract INTRODUCTION: The construction industry is considered conservative in adopting new products/technologies, and environmental characteristics are one of the most important features of novel solutions. In this context, our study aims to present a building design-oriented assessment of a novel building product by extending the functional unit scope and involving multiple realistic building design scenarios. The task will be performed using the example of vacuum insulation panels (VIPs), a superinsulation product that can be used in various building applications. The study will focus on terrace insulation applications, where VIPs are an attractive solution for building designers due to the possibility of barrier-free floor design. However, they lack environmental evaluation. METHOD: A life cycle assessment (LCA) analysis is performed on two hypothetical buildings located in Ljubljana (Slovenia) for the cradle-to-gate and operational energy life cycle stages (A1-A3 + B6 according to EN 15978). A whole-year dynamic thermal response simulation was executed using the Design Builder software. Five barrier-free terrace design scenarios that influence the embodied and operational carbon footprint (while maintaining the functional and architectural integrity of the building design) were examined. RESULTS: The study showed that although EPS insulation showed a smaller embodied carbon footprint on the product level, the building level analysis showed that using VIPs in terrace applications leads to favourable or comparable environmental impact. CONCLUSIONS: Building products can be evaluated on three functional unit levels: product, application and building. By extending the boundaries from the product/application level to the entire building level, the study provides an example of a building design-oriented approach to LCA. The complexity increases by upgrading the functional unit scope to the building level, while the results become more case-specific and less general. Ideally, a novel building product should show environmental superiority on all three levels. However, as there are almost countless design possibilities in buildings, environmental superiority (or inferiority) on the product level does not necessarily indicate superiority (or inferiority) on the building level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.