Abstract

Nucleic acid force fields have been shown to reproduce structural properties of DNA and RNA very well, but comparative studies with respect to thermodynamic properties are rare. As a test for thermodynamic properties, we have computed hydration free energies and chloroform-to-water partition coefficients of nucleobases using the AMBER-99, AMBER-gaff, CHARMM-27, GROMOS-45a4/53a6 and OPLS-AA force fields. A mutual force field comparison showed a very large spread in the calculated thermodynamic properties, demonstrating that some of the parameter sets require further optimization. The choice of solvent model used in the simulation does not have a significant effect on the results. Comparing the hydration free energies obtained by the various force fields to the adenine and thymine experimental values showed a very large deviation for the GROMOS and AMBER parameter sets. Validation against experimental partition coefficients showed good agreement for the CHARMM-27 parameter set. In view of mutation studies, differences in partition coefficient between two bases were also compared, and good agreement between experiments and calculations was found for the AMBER-99 parameter set. Overall, the CHARMM-27 parameter set performs best with respect to the thermodynamic properties tested here.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.