Abstract

Anthracnose of the tea plant (Camellia sinensis), caused by Colletotrichum spp., poses a significant threat to both the yield and quality of tea production. To address this challenge, researchers have looked to the application of endophytic bacteria as a natural alternative to the use chemical pesticides, offering potential for enhancing disease resistance and abiotic stress tolerance in tea plants. This study focused on identifying effective microbial agents to combat tea anthracnose caused by Colletotrichum fructicola. A total of 38 Bacillus-like strains were isolated from the tea rhizosphere, with 8 isolates showing substantial inhibitory effects against the mycelial growth of C. fructicola, achieving an average inhibition rate of 60.68%. Among these, strain T3 was particularly effective, with a 69.86% inhibition rate. Through morphological, physiological, and biochemical characterization, along with 16S rRNA gene phylogenetics analysis, these strains were identified as B. inaquosorum (T1 and T2), B. tequilensis (T3, T5, T7, T8, and T19), and B. spizizenii (T6). Biological and molecular assays confirmed that these strains could induce the expression of genes associated with antimicrobial compounds like iturin, fengycin, subtilosin, and alkaline protease, which effectively reduced the disease index of tea anthracnose and enhanced tea plant growth. In conclusion, this study demonstrates that B. inaquosorum, B. tequilensis, and B. spizizenii strains are promising biocontrol agents for managing tea anthracnose.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.