Abstract

Multiple stressors are ubiquitous in coastal ecosystems as a result of increased human activity and development along coastlines. Accurately assessing multiple stressor effects is essential for predicting stressor impacts and informing management to efficiently and effectively mitigate potentially complex ecological responses. Extracting relevant information on multiple stressor studies conducted specifically within coastal wetlands is not possible from existing reviews, posing challenges in highlighting knowledge gaps and guiding future research. Here, we systematically review manipulative studies that assess multiple anthropogenic stressors within saltmarsh, mangrove, and seagrass ecosystems. In the past decade, there has been a rapid increase in publications, with seagrasses receiving the most attention (76 out of a total of 143 studies). Across all studies, nutrient loading and temperature were tested most often (N = 64 and N = 48, respectively), while the most common stressor combination was temperature with salinity (N = 12). Stressor application and study design varied across ecosystems. Studies are mostly conducted in highly controlled environments, without considering how natural variations in the physicochemical environment of coastal ecosystems may influence stressor intensity and timing under these conditions. This may result in vastly different ecological responses across levels of biological organisation. Shifting focus from univariate analytical approaches to multivariate, particularly path analysis, will help elucidate complex ecological relationships and highlight direct and indirect effects of multiple stressors in coastal ecosystems. There is a solid foundation of multiple stressor research in coastal wetlands. However, we recommend future research enhance ecological realism in experimental design by studying the effects of stressor combinations whilst accounting for spatiotemporal variability that reflects natural conditions of coastal ecosystems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.