Abstract

Treatment tolerability is a significant limitation to pancreatic cancer treatment with radiotherapy due to proximity to highly radiosensitive organs and respiratory motion necessitating expanded target margins. Further, pancreatic tumors are difficult to visualize on conventional radiotherapy systems. Surrogates are often used to locate the tumor but are often inconsistent and do not provide strong positional relations throughout the respiratory cycle. This work utilizes a retrospective dataset of 45 pancreatic cancer patients treated on an MR-Linac system with cine MRI acquired for real-time target tracking. We investigated intra-fraction motion of tumors and two abdominal surrogates, leading to prediction models between the tumor and surrogate. Patient specific motion evaluation and prediction models were generated from 225 cine MRI series acquired during treatment. Tumor contours were used to evaluate the pancreatic tumor motion. Linear regression and principal component analysis (PCA) based models were used to predict tumor position from the anterior-posterior (AP) motion of the abdominal surface, the superior-inferior (SI) motion of the diaphragm, or a combination. Models were evaluated using mean squared error (MSE) and mean absolute error (MAE). Contour analysis showed the average pancreatic tumor motion range was 7.4±2.7mm and 14.9±5.8mm in the AP and SI directions, respectively. The PCA model had MSE of 1.4mm2 and 0.6mm2 , for the SI and AP directions, respectively, with both surrogates as inputs for the models. When only the abdomen surrogate was used, MSE was 1.3mm2 and 0.4mm2 in the SI and AP directions, while it was 0.4mm2 and 1.3mm2 when only the diaphragm surrogate was used. We evaluated intra-fraction pancreatic tumor motion and demonstrated prediction models between the tumor and surrogate. The models calculated the pancreatic tumor position from diaphragm, abdominal, or both contours within standard pancreatic cancer target margin, and the process could be applied to other disease sites in the abdominothoracic cavity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call