Abstract

The sustainable conservation of mountain semi-natural meadows depends on the knowledge of their vegetation dynamics and management practices. Time series of vegetation indices (VI) derived from high temporal resolution satellite images can be a useful tool to the sustainable management of semi-natural meadows ecosystem and grazing activities. In this study satellite VI from the Moderate Resolution Imaging Spectroradiometer (MODIS) are evaluated against in situ measurements of VIs and plant height in the semi-natural mountain meadows of Northeast Portugal. In two testes sites, we evaluated the performance of Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) from MODIS and field spectroradiometer sensor in characterizing semi-natural meadows phenology and plant height. The Savitzky-Golay filter was used for smoothing each VI time series, as well as to extract a number of NDVI and EVI metrics by computing derivatives. There was weak to reasonable agreement between VIs-metrics from MODIS and ground based derived phenology. The NDVI had a great sensitivity to crop growth changes during start of growth season, whereas the EVI exhibited more sensitivity at the pick of the maximum green biomass. The relationship between vegetation height and both VI from MODIS or field spectroradiometer, fit a non-linear model with similar pattern function for each test site. Regression analysis revealed that 67% of the in-season plant height variability could be explained by MODIS EVI . These results suggest a great sensibility of MODIS EVI to detect the phenology and plant height of semi-natural meadows, even in situations of high plant height.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call