Abstract
Protein coordinated iron-sulfur clusters drive electron flow within metabolic pathways for organisms throughout the tree of life. It is not known how iron-sulfur clusters were first incorporated into proteins. Structural analogies to iron-sulfide minerals present on early Earth, suggest a connection in the evolution of both proteins and minerals. The availability of large protein and mineral crystallographic structure data sets, provides an opportunity to explore co-evolution of proteins and minerals on a large-scale using informatics approaches. However, quantitative comparisons are confounded by the infinite, repeating nature of the mineral lattice, in contrast to metal clusters in proteins, which are finite in size. We address this problem using the Niggli reduction to transform a mineral lattice to a finite, unique structure that when translated reproduces the crystal lattice. Protein and reduced mineral structures were represented as quotient graphs with the edges and nodes corresponding to bonds and atoms, respectively. We developed a graph theory-based method to calculate the maximum common connected edge subgraph (MCCES) between mineral and protein quotient graphs. MCCES can accommodate differences in structural volumes and easily allows additional chemical criteria to be considered when calculating similarity. To account for graph size differences, we use the Tversky similarity index. Using consistent criteria, we found little similarity between putative ancient iron-sulfur protein clusters and iron-sulfur mineral lattices, suggesting these metal sites are not as evolutionarily connected as once thought. We discuss possible evolutionary implications of these findings in addition to suggesting an alternative proxy, mineral surfaces, for better understanding the coevolution of the geosphere and biosphere.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.