Abstract

Abstract The usage of deep learning is being escalated in many applications. Due to its outstanding performance, it is being used in a variety of security and privacy-sensitive areas in addition to conventional applications. One of the key aspects of deep learning efficacy is to have abundant data. This trait leads to the usage of data which can be highly sensitive and private, which in turn causes wariness with regard to deep learning in the general public. Membership inference attacks are considered lethal as they can be used to figure out whether a piece of data belongs to the training dataset or not. This can be problematic with regard to leakage of training data information and its characteristics. To highlight the significance of these types of attacks, we propose an enhanced methodology for membership inference attacks based on adversarial robustness, by adjusting the directions of adversarial perturbations through label smoothing under a white-box setting. We evaluate our proposed method on three datasets: Fashion-MNIST, CIFAR-10 and CIFAR-100. Our experimental results reveal that the performance of our method surpasses that of the existing adversarial robustness-based method when attacking normally trained models. Additionally, through comparing our technique with the state-of-the-art metric-based membership inference methods, our proposed method also shows better performance when attacking adversarially trained models. The code for reproducing the results of this work is available at https://github.com/plll4zzx/Evaluating-Membership-Inference-Through-Adversarial-Robustness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.