Abstract

Purpose – The purpose of this paper is to develop a comprehensive framework to identify and classify key medical tourism enablers (MTEs) and to study the direct and indirect effects of each enabler on the growth of medical tourism in India. Design/methodology/approach – In this paper, an integrated approach using interpretive structural modeling (ISM) and Fuzzy Matrice d'Impacts Croisés Multiplication Appliquée á un Classement (FMICMAC) analysis has been developed to identify and classify the key MTEs, typically identified by a comprehensive review of literature and expert opinion. The key enablers are also modeled to find their role and mutual influence. Findings – The key finding of this modeling helps to identify and classify the enablers which may be useful for medical tourism decision makers to employ this model for formulating strategies in order to overcome challenges and to become a preferred medical tourism destination. Integrated model reveals enablers such as medicine insurance coverage, international healthcare collaboration, and efficient information system as dependent enablers. No enabler is found to be autonomous enablers. The important enablers like healthcare infrastructure facilities and global competition are found as the linkage enablers. Research in medicine and pharmaceutical science, medical tourism market, transplantation law, top management commitment, national healthcare policy, competent medical and para-medical staffs are found as the independent enablers. Integrated model also establishes the direct and indirect relationship among various enablers. Originality/value – The research provides an integrated model using ISM and FMICMAC to identify and classify various key enablers of medical tourism in India. In conventional cross-impact matrix multiplication applied to classification analysis, binary relationship of various enablers is considered. FMICMAC analysis helps to establish possibility of relationship among various enablers so that low-key hidden factors can be identified. The low-key hidden factors may initially exhibit marginal influence but they may show significant influence later on during analysis. The uncertainty and fuzziness of relationship among various enablers can be conveniently handled by FMICMAC and expert opinions can easily be captured. This research will help medical tourism decision makers to select right enablers for the growth of medical tourism in India.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.