Abstract

To explore and compare the diagnostic values of mono-exponential, bi-exponential, and stretched-exponential diffusion-weighted imaging (DWI) parameters of primary lesions and lymph nodes (LNs) to predict mediastinal LN metastasis in patients with non-small cell lung cancer. Sixty-one patients with non-small cell lung cancer underwent preoperative magnetic resonance imaging, including multiple b-value DWI. The DWI parameters, including apparent diffusion coefficient (ADC) from a mono-exponential model, true diffusion (D) coefficient, pseudo-diffusion (D*) coefficient, and perfusion fraction (f) from a bi-exponential model, distributed diffusion coefficient (DDC) and intravoxel diffusion heterogeneity index (α) from a stretched-exponential model of primary tumors and LNs and the size characteristics of LNs, were measured and compared. Multivariate logistic regression analysis was used to establish models for predicting mediastinal LN metastasis. Receiver operating characteristic analysis was applied to evaluate diagnostic performances. The DWI parameters of primary tumors showed no statistical significance between LN metastasis-positive and LN metastasis-negative groups. Nonmetastatic LNs had significantly higher ADC, D, DDC, and α values compared with metastatic LNs (all P < 0.05). The short-dimension, long-dimension, and short-long dimension ratio of metastatic LNs was significantly larger than those of nonmetastatic ones (all P < 0.05). The D value showed the best diagnostic performance among all DWI-derived single parameters, and the short dimension of LNs performed the same among all the size variables. Furthermore, the combination of DWI parameters (ADC and D) and the short dimension of LNs can significantly improve diagnostic efficiency. The ADC, D, DDC, and α from the mono-exponential, bi-exponential, and stretched-exponential models were demonstrated efficient in differentiating benign from metastatic LNs, and the combination of ADC, D, and short dimension of LNs may have a better diagnostic performance than DWI or size-derived parameters either in combination or individually.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call