Abstract
Meteorological drought is a climatic phenomenon that affects all global climates with social, political, and economic impacts. Consequently, it is essential to develop drought forecasting tools to minimize the impacts on communities. Here, probabilistic models based on Markov chains (first and second order) and Bayesian networks (first and second order) were explored to generate forecasts of meteorological drought events. A Ranked Probability Score (RPS) metric selected the best-performing model. Long-term precipitation data from Liberia Airport in Guanacaste, Costa Rica, from 1937 to 2020 were used to estimate the 1-month Standardized Precipitation Index (SPI-1) characterizing four meteorological drought states (no drought, moderate drought, severe drought, and extreme drought). The validation results showed that both models could reflect the climatic seasonality of the dry and rainy seasons without mistaking 4–5 months of the rain-free dry season for a drought. Bayesian networks outperformed Markov chains in terms of the RPS at both reproducing probabilities of drought states in the rainy season and when compared to the months in which a drought state was observed. Considering the forecasting capability of the latter method, we conclude that these models can help predict meteorological drought with a 1-month lead time in an operational early warning system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.