Abstract
While large-scale adoption of electric vehicles (EVs) globally would reduce carbon dioxide (CO2) and traditional air pollutant emissions from the transportation sector, emissions from the electric sector, refineries, and potentially other sources would change in response. Here, a multi-sector human-Earth systems model is used to evaluate the net long-term emission implications of large-scale EV adoption in the US over widely differing pathways of the evolution of the electric sector. Our results indicate that high EV adoption would decrease net CO2 emissions through 2050, even for a scenario where all electric sector capacity additions through 2050 are fossil fuel technologies. Greater net CO2 reductions would be realized for scenarios that emphasize renewables or decarbonization of electricity production. Net air pollutant emission changes in 2050 are relatively small compared to expected overall decreases from recent levels to 2050. States participating in the Regional Greenhouse Gas Initiative experience greater CO2 and air pollutant reductions on a percentage basis. These results suggest that coordinated, multi-sector planning can greatly enhance the climate and environmental benefits of EVs. Additional factors are identified that influence the net emission impacts of EVs, including the retirement of coal capacity, refinery operations under reduced gasoline demands, and price-induced fuel switching in residential heating and in the industrial sector.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.