Abstract

This research study was conducted to investigate the laser melting parameters of NiCrAlY-APS coating. High-temperature oxidation was investigated using yttria partially stabilized zirconia (YSZ) ceramic coating. Also, the oxidation behavior of the TBC coating was investigated and studied before to and after laser surface melting of the NiCrAlY coating. Microstructural characterization was done using a scanning electron microscope (SEM), elemental analysis by energy dispersive spectroscopy (EDS), and phase analysis by X-ray diffraction (XRD). Surface melting was then performed in the power range of 150–300 W and scanning speed of 2–6 mm s−1. Surface melting was also conducted on the coating using two strategies: single-pass and multi-pass. The obtained results showed that the average melting depth and thickness reduction were directly related to the laser power, while they had an inverse relation with the laser scanning speed. Furthermore, multi-pass surface melting parameters reduced porosity to less than 0.1 %. Roughness measurements also showed a decrease in the coating's surface hardness after surface melting, as compared to the APS coating. The structure consisted of oriented columnar dendrites after melting the laser. The adhesion strength of the TBC coating and laser surface melting coating was at 41 MPa and 53 MPa, respectively. After 200 h of oxidation in the G1504 sample, the TGO layer's growth was decreased; due to the growth of a single oxide layer, it had better oxidation resistance in comparison to the other sample.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.