Abstract

Tobacco smoking is the most important risk factor for bladder cancer. Previous studies have identified the N-acetyltransferase (NAT2) gene in association with bladder cancer risk. The NAT2 gene encodes an enzyme that metabolizes aromatic amines, carcinogens commonly found in tobacco smoke. In our study, we evaluated potential interactions of tobacco smoking with NAT2 genotypes and polygenic risk score (PRS) for bladder cancer, using data from the UK Biobank, a large prospective cohort study. We used Cox proportional hazards models to measure the strength of the association. The PRS was derived using genetic risk variants identified by genome-wide association studies for bladder cancer. With an average of 10.1 years of follow-up of 390 678 eligible participants of European descent, 769 incident bladder cancer cases were identified. Current smokers with a PRS in the highest tertile had a higher risk of developing bladder cancer (HR: 6.45, 95% CI: 4.51-9.24) than current smokers with a PRS in the lowest tertile (HR: 2.41, 95% CI: 1.52-3.84; P for additive interaction = <.001). A similar interaction was found for genetically predicted metabolizing NAT2 phenotype and tobacco smoking where current smokers with the slow NAT2 phenotype had an increased risk of developing bladder cancer (HR: 5.70, 95% CI: 2.64-12.30) than current smokers with the fast NAT2 phenotype (HR: 3.61, 95% CI: 1.14-11.37; P for additive interaction = .100). Our study provides support for considering both genetic and lifestyle risk factors in developing prevention measures for bladder cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call