Abstract

The application of Inherent Safety (IS) principles and Inherently Safer Design (ISD) concept has been proven to reduce the risk of accidents and is economically attractive for chemical process plants. However, they also suffer from several trade-offs or conflicts that arise from the modification suggested by the concept. A design which is identified to be inherently safer from one hazard could possibly alter the magnitude of other hazards, which were previously not at a critical level. Therefore, an IS tool should emphasise this limitation before a decision can be made, in order to obtain the best ISD alternatives. This paper presents a likelihood tool to evaluate the potential hazard conflicts in ISD alternatives at preliminary design stage. The tool is part of a framework which is developed based on risk approach. The proposed tool is applied to hydrogen storage systems with the objective to prevent and minimise potential fire and explosion. The results have shown that the new tool is able to highlight the potential new hazards and variation of magnitude of existing hazards which emerged when the hydrogen storage is changed according to the ISD concept at

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.