Abstract

The current paper presents a collection of numerical, mathematical, and statistical techniques to predict strain behavior and required pressing force of 7075 aluminum alloy within the different parameters of equal-channel angular pressing (ECAP). Accordingly, response surface methodology was utilized to estimate the contribution percentage of the processing parameters (i.e., die channel angle, outer corner angle, coefficient of friction, and punch rate) on effective plastic strain, standard deviation of effective strain, and required pressing force of the deformed sample; then, regression modeling relationships were presented for each of the three outputs. Also, a suitable coincidence was found between the predicted regression model, numerical approach, theoretical technique, and experimental work. It is found that the achieved results could be used as a successful guideline for evaluation of the ECAP process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.