Abstract

Deep subsurface storage and sequestration of CO2 has been identified as a potential mitigation technique for rising atmospheric CO2 concentrations. Sequestered CO2 represents a potential risk to overlying aquifers if the CO2 leaks from the deep storage reservoir. Experimental and modeling work is required to evaluate potential risks to groundwater quality and develop a systematic understanding of how CO2 leakage may cause important changes in aquifer chemistry and mineralogy by promoting dissolution/precipitation, adsorption/desorption, and redox reactions. Sediments from the High Plains aquifer in Kansas, United States, were used in this investigation, which is part of the National Risk Assessment Partnership Program sponsored by the US Department of Energy. This aquifer was selected to be representative of consolidated sand and gravel/sandstone aquifers overlying potential CO2 sequestration repositories within the continental US. In this paper, we present results from batch experiments conducted at room temperature and atmospheric pressure with four High Plains aquifer sediments. Batch experiments simulate sudden, fast, and short-lived releases of the CO2 gas as would occur in the case of well failure during injection. Time-dependent release of major, minor, and trace elements were determined by analyzing the contacting solutions. Characterization studies demonstrated that the High Plains aquifer sediments weremore » abundant in quartz and feldspars, and contained about 15 to 20 wt% montmorillonite and up to 5 wt% micas. Some of the High Plains aquifer sediments contained no calcite, while others had up to about 7 wt% calcite. The strong acid extraction tests confirmed that in addition to the usual elements present in most soils, rocks, and sediments, the High Plains aquifer sediments had appreciable amounts of As, Cd, Pb, Cu, and occasionally Zn, which potentially may be mobilized from the solid to the aqueous phase during or after exposure to CO2. However, the results from the batch experiments showed that the High Plains sediments mobilized only low concentrations of trace elements (potential contaminants), which were detected occasionally in the aqueous phase during these experiments. Importantly, these occurrences were more frequent in the calcite-free sediment. Results from these investigations provide useful information to support site selection, risk assessment, and public education efforts associated with geological CO2 storage and sequestration.« less

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.