Abstract

Leaf area index (LAI) is an important surface biophysical parameter as a measure of vegetation cover, vegetation productivity, and as an input to ecosystem process models. Recently, a number of coarse-scale (1-km) LAI maps have been generated over large regions including the Canadian boreal forest. This study focuses on the production of fine-scale (≤30-m) LAI maps using the forest light interaction model-clustering (FLIM-CLUS) algorithm over selected boreal conifer stands and the subsequent comparison of the fine-scale maps to coarse-scale LAI maps synthesized from Landsat TM imagery. The fine-scale estimates are validated using surface LAI measurements to give relative root mean square errors of under 7% for jack pine sites and under 14% for black spruce sites. In contrast, finer scale site mean LAI ranges between 49% and 86% of the mean of surface estimates covering only part of the sites and 54% to 110% of coarse-scale site mean LAI. Correlations between fine-scale and coarse-scale estimates range from near 0.5 for 30-m coarse-scale images to under 0.3 to 1-km coarse-scale images but increase to near 0.90 after imposing fine-scale zero LAI areas in coarse-scale estimates. The increase suggests that coarse-scale image-based LAI estimates require consideration of sub-pixel open areas. Both FLIM-CLUS and coarse-scale site mean LAI are substantially lower than surface estimates over northern sites. The assumption of spatially random residuals in regression-based estimates of LAI may not be valid and may therefore add to local bias errors in estimating LAI remotely. Differences between fine-scale airborne LAI maps and 30-m-scale Landsat TM LAI maps suggests that, for sparse boreal conifer stands, LAI maps produced from Landsat TM alone may not always be sufficient for validation of coarser scale LAI maps. In addition, previous studies may have used biased LAI estimates over the study site. Fine-scale spatial LAI maps offer one means of assessing and correcting for effects of sub-pixel open area patches and for characterising the spatial pattern of residuals in coarse-scale LAI estimates in comparison to the true distribution of LAI on the surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call