Abstract
Abstract Large uncertainty exists in hydrologic sensitivity (HS), the global-mean precipitation increase per degree of warming, across global climate model (GCM) ensembles. Meanwhile, the global circulation and hence global precipitation are sensitive to variations of surface temperature under internal variability. El Niño–Southern Oscillation (ENSO) is the most dominant mode of global temperature variability and hence of precipitation variability. Here we show in phase 6 of the Coupled Model Intercomparison Project (CMIP6) that the strength of HS under ENSO is predictive of HS in the climate change context (r = 0.56). This correlation increases to 0.62 when only central Pacific ENSO events are considered, suggesting that they are a better proxy for HS under future warming than east Pacific ENSO events. GCMs with greater HS are associated with greater weakening of the Walker circulation and expansion of the Hadley circulation under ENSO. Observations of HS under ENSO suggest that it is significantly underestimated by the GCMs, with the lower bound of observational uncertainty almost double even the highest-HS GCMs. The ENSO-related transformation of the tropical circulation holds clues into how the GCMs may be improved in order to more reliably simulate future hydrological cycle intensification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.