Abstract

Polymer chemical recycling to monomers (CRM) is important to help achieve a circular plastic economy, but the "rules" governing catalyst design for such processes remain unclear. Here, carbon dioxide-derived polycarbonates undergo CRM to produce epoxides and carbon dioxide. A series of dinuclear catalysts, Mg(II)M(II) where M(II) = Mg, Mn, Fe, Co, Ni, Cu, and Zn, are compared for poly(cyclohexene carbonate) depolymerizations. The recycling is conducted in the solid state, at 140 °C monitored using thermal gravimetric analyses, or performed at larger-scale using laboratory glassware. The most active catalysts are, in order of decreasing rate, Mg(II)Co(II), Mg(II)Ni(II), and Mg(II)Zn(II), with the highest activity reaching 8100 h-1 and with >99% selectivity for cyclohexene oxide. Both the activity and selectivity values are the highest yet reported in this field, and the catalysts operate at low loadings and moderate temperatures (from 1:300 to 1:5000, 140 °C). For the best heterodinuclear catalysts, the depolymerization kinetics and activation barriers are determined. The rates in both reverse depolymerization and forward CHO/CO2 polymerization catalysis show broadly similar trends, but the processes feature different intermediates; forward polymerization depends upon a metal-carbonate intermediate, while reverse depolymerization depends upon a metal-alkoxide intermediate. These dinuclear catalysts are attractive for the chemical recycling of carbon dioxide-derived plastics and should be prioritized for recycling of other oxygenated polymers and copolymers, including polyesters and polyethers. This work provides insights into the factors controlling depolymerization catalysis and steers future recycling catalyst design toward exploitation of lightweight and abundant s-block metals, such as Mg(II).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.