Abstract

The chemical analysis of plants and soils is a frequently used approach in understanding a serpentine ecosystem. Studies on vegetation growth in serpentine soils focused on various plant species for remediation purposes of soil contamination with heavy metals, emphasizing their role in the metal extraction or stabilization in the soil. The aims of this study were to measure the concentrations of Cr, Mn, and Ni in the soils and plants and to elucidate the phytoremediation potential of the studied plants. This study was performed at an abandoned site of serpentine mining in eastern Taiwan. Seven plant species were collected for analysis of Cr, Mn, and Ni, including Crotalaria micans, Miscanthus floridulus, Leucaena leucocephala, Bidens pilosa, Pueraria lobata, Melilotus indicus, and Conyza canadensis. The Cr and Ni concentrations in all studied plants were higher than those in general plants. In all species, the mean concentrations of Cr, Mn, and Ni in the shoots were lower than those in the root. None of the collected specimens exhibited hyperaccumulation of Cr, Mn, and Ni. All studied species may be used to remediate contaminated soils through phytostabilization of Cr and Mn, whereas M. floridulus and M. indicus are appropriate plants for phytostabilization of Ni. However, C. micans, L. leucocephala, B. pilosa, P. lobata, and C. canadensis have the potential to remove Ni from contaminated soils for the purpose of phytoextraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.