Abstract

Accurate cortical source localization of event-related potentials (ERPs) requires using realistic head models constructed from the participant's structural magnetic resonance imaging (MRI). A challenge in developmental studies is the limited accessibility of participant-specific MRIs. The present study compared source localization of infants' N290 ERP activities estimated using participant-specific head models with a series of substitute head models. The N290 responses to faces relative to toys were measured in 36 infants aged at 4.5, 7.5, 9, and 12months. The substitutes were individual-based head models constructed from age-matched MRIs with closely matched ("close") or different ("far") head measures with the participants, age-appropriate average template, and age-inappropriate average templates. The greater source responses to faces than toys at the middle fusiform gyrus (mFG) estimated using participant-specific head models were preserved in individual-based head models, but not average templates. The "close" head models yielded the best fit with the participant-specific head models in source activities at the mFG and across face-processing-related regions of interest (ROIs). The age-appropriate average template showed mixed results, not supporting the stimulus effect but showed topographical distributions across the ROIs like the participant-specific head models. The "close" head models are the most optimal substitute for participant-specific MRIs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.