Abstract

AbstractAnthropogenic activity imposes increasing pressure on wildlife populations globally; these pressures can affect habitat suitability and function, modify wildlife space use, and influence population viability. Native mountain goat (Oreamnos americanus) populations can be negatively affected by anthropogenic disturbance and modify their space use in response to land development and recreational activity. From 2018 to 2020, we studied space use of mountain goats northeast of Smithers, British Columbia, Canada, an area that is subject to increasing anthropogenic development and yearlong recreational activities. We aimed to generate models that would improve our ability to identify habitat for mountain goats relative to existing survey data and established ungulate winter ranges. Using resource selection function (RSF) analyses generated from global positioning system (GPS) collar data, we identified influential habitat covariates and compared these covariates and RSF values to existing habitat models. Additionally, we compared the extent to which our models were congruent with existing resource selection probability functions, were congruent with aerial survey data, and overlapped existing ungulate winter ranges previously derived from predictive models inside and outside of the study area. Overall, our models noted higher RSF values among GPS data relative to aerial survey data for winter months, while results for summer habitats were comparable. In extending our RSFs outside of the study area and evaluating the overlap with ungulate winter ranges in adjacent areas, values were similar, albeit lower, as is expected given that the models were developed elsewhere. Ultimately, these models, combined with existing methods, improve the accuracy and reliability of identified, important areas of habitat for mountain goats. We recommend that the RSF models generated here be used in conjunction with aerial survey data and existing methods to delineate ungulate winter ranges for mountain goats in similar eco‐regions in British Columbia. The models developed here support existing methods that have been used to delineate or validate ungulate winter ranges for mountain goats in British Columbia and help facilitate mitigation measures to support the continued use of important winter habitat and significant landscape features that play a role in ensuring population viability and resilience through time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call