Abstract

Efforts to divert organics away from landfills are viewed by many as an important measure to significantly reduce the climate change impacts of municipal solid waste management. However, the actual greenhouse gas (GHG) impacts of organics diversion from landfills have yet to be thoroughly evaluated and whether such a diversion provides significant environmental benefits in terms of GHG impacts must be answered. This study, using California-specific information, aimed to analyse the GHG impacts of organics diversion through a life-cycle assessment (LCA). This LCA considered all aspects of organics management including transportation, materials handling, GHG emissions, landfill gas capture/utilization, energy impacts, and carbon sequestration. The LCA study evaluated overall GHG impacts of landfilling, and alternative management options such as composting and anaerobic digestion for diverted organic waste. The LCA analysis resulted in net GHG reductions of 0.093, 0.048, 0.065 and 0.073 tonnes carbon equivalent per tonne organic waste for landfilling, windrow composting, aerated static pile composting, and anaerobic digestion, respectively. This study confirms that all three options for organics management result in net reductions of GHG emissions, but it also shows that organics landfilling, when well-managed, generates greater GHG reductions. The LCA provides scientific insight with regards to the environmental impacts of organics management options, which should be considered in decision and policy-making. The study also highlights the importance of how site and case-specific conditions influence project outcomes when considering organic waste management options.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call