Abstract

The dynamics of gravity-assist (GA) trajectories contain strong nonlinearity, which makes the traditional methods for impulse transfer range set (RS) are intractable to deal with the gravity-assist RS. This paper develops a novel method to evaluate the gravity-assist RS based on regression methods in supervised machine learning (SML) field. The performances of three powerful regression methods with several common kernel functions are assessed. The Gaussian Processes Regression (GPR) method with Matérn 3/2 kernel is selected because of the minimum mean squared error (1.11×10−3 km2/s2). The predicting model based on GPR is constructed to make prediction form the orbital elements of destination orbits to the total velocity increment of corresponding optimal GA trajectories. The percentage error of predicting model is no more than 2%. Millions pairs of sample points are generated by the trained predicting model. The points with specified value of total velocity increment are extracted, of which the envelope constitutes the gravity-assist RS. Both of Venus GA and Mars GA trajectories are considered in this paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call