Abstract
Typically, measuring the generalization ability of a neural network relies on the well-known method of cross-validation which statistically estimates the classification error of a network architecture thus assessing its generalization ability. However, for a number of reasons, cross-validation does not constitute an efficient and unbiased estimator of generalization and cannot be used to assess generalization of neural network after training. In this paper, we introduce a new method for evaluating generalization based on a deterministic approach revealing and exploiting the network’s domain of validity. This is the area of the input space containing all the points for which a class-specific network output provides values higher than a certainty threshold. The proposed approach is a set membership technique which defines the network’s domain of validity by inverting its output activity on the input space. For a trained neural network, the result of this inversion is a set of hyper-boxes which constitute a reliable and \(\varepsilon\)-accurate computation of the domain of validity. Suitably defined metrics on the volume of the domain of validity provide a deterministic estimation of the generalization ability of the trained network not affected by random test set selection as with cross-validation. The effectiveness of the proposed generalization measures is demonstrated on illustrative examples using artificial and real datasets using swallow feed-forward neural networks such as Multi-layer perceptrons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.