Abstract

ABSTRACT Missing values in land surface temperature (LST) data are often observed in the cloud-sheltered area, thereby seriously limiting the spatiotemporal continuity of LST. In this work, Remotely Sensed Daily Land Surface Temperature Reconstruction model(RSDAST) is used to gap-fill the pixels sheltered by clouds in FY-3 C/VIRR LST. Result shows that the cloud pixels in VIRR and MODIS original LST (OLST) product can be reconstructed accurately, but the reconstruction accuracy of MODIS LST is better compared to VIRR based on the RSDAST model. In addition, the reconstruction accuracy of VIRR and MODIS LST decreases with the increase in cloud coverage, and the reduction of the reconstruction accuracy of VIRR LST is larger than that of MODIS data. The number of effective dry-wet edge fitted by VIRR RLST/NDVI scatterplot was higher than that of OLST/NDVI, and the number of clear sky pixels in Reconstructed TVDI (RTVDI) images increased significantly, indicating that the RSDAST expands the temporal resolution and spatial coverage of infrared remote sensing data under cloudy conditions. Moreover, in DOY150–DOY243, the correlation between RTVDI and soil moisture is better than that of Original TVDI (OTVDI), indicating that the RSDAST improves the monitoring ability of soil moisture in these conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.