Abstract

Focused ion beam (FIB) microscopy uses Ga+ ions to remove material from a sample for a variety of imaging and preparation techniques. While considerable work has examined the effects of FIB exposure on a number of materials, optimized FIB conditions for use with softer polymeric materials are yet to be determined. In this report we use phase contrast AFM to measure local changes in the elastic modulus of polycarbonate surfaces parallel to a sectioning FIB at varying beam energies. We show that polycarbonate surfaces exposed to lower FIB energies appear stiffer than the bulk material whereas surfaces exposed to the higher beam energies of up to 25keV are more representative of the bulk material. Energy dispersive spectroscopy (EDS) indicates that the polymer surfaces become stiffer because of Ga+ implantation from the FIB. Our experimental observations are supported by computer simulations showing an increase in the residual Ga+ concentration near-surface at lower FIB energies. A high energy FIB is therefore shown to be less invasive, producing a surface more representative of the bulk material, than using low energy FIB when sectioning polymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.