Abstract

Fire shelters are critical safety items required for use by most wildland firefighters in the United States. Most testing of fire shelters, clothing and other personal protective equipment (PPE) has been limited to prescribed fires or laboratory based studies. This study reports results from experiments where lined and unlined stainless steel or aluminum and glass fabric shelters were tested under high intensity crown fire conditions in and adjacent to experimental burn plots. Firefighter clothing and standard (pre-2003) fire shelters were also tested. Measured shelter surface and air temperatures and thermal impact on firefighter personal protective equipment were used to deduce the survivability of shelter designs and deployment location. Multiple glass and aluminum layered shelters show more promise than stainless steel shelters for improving overall fire shelter survivability. Data collected outside the burn plots generally indicate decreased heating as distance from forest edge increases, supporting the importance of maximizing distance from vegetation for survivability. It is recommended that common experiment protocols be adopted so that future research into fire shelter and PPE performance builds on work-to-date and provides a common basis from which analyses can be completed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call