Abstract
This study proposed an in-depth multiscale analysis procedure to identify the dip slope area and assess dip slope stability and influencing area. The proposed analysis procedure comprised five stages: (1) identifying the potential area of a dip slope, (2) analyzing the possible failure types of the dip slope, (3) evaluating slope activity, (4) analyzing dip slope stability under the influence of possible triggering factors, and (5) assessment of the deformation and deposition area. To validate the proposed procedure, the Chaochouhu region of Taiwan was analyzed as a dip slope case. In stages (1) to (3), the scale of the utilized map and the precision of associated data were evaluated to identify the potential area of a dip slope, the possible failure types, and the activity of each slope unit. In stages (4) and (5), the processes of deformation and sliding in a high-activity slope unit were simulated using the discrete element method. The numerical model was first verified using in-situ monitoring data obtained from inclinometers. Subsequently, the model was used to predict the slope behavior under conditions of wetting deterioration of geomaterial. The multiscale analysis revealed comprehensive information regarding the dip slope. The application of the proposed approach would be useful to civil engineers for evaluating dip slope stability as well as to relevant authorities for planning hazard mitigation strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.