Abstract
Malaria in South Africa is still a problem despite existing efforts to eradicate the disease. In the Vhembe District Municipality, malaria prevalence is still high, with a mean incidence rate of 328.2 per 100,0000persons/year. This study aimed at evaluating environmental covariates, such as vegetation moisture and vegetation greenness, associated with malaria vector distribution for better predictability towards rapid and efficient disease management and control. The 2005 malaria incidence data combined with Landsat 5 ETM were used in this study. A total of nine remotely sensed covariates were derived, while pseudo-absences in the ratio of 1:2 (presence/absence) were generated at buffer distances of 0.5-20km from known presence locations. A stepwise logistic regression model was applied to analyse the spatial distribution of malaria in the area. A buffer distance of 10km yielded the highest classification accuracy of 82% at a threshold of 0.9. This model was significant (ρ<0.05) and yielded a deviance (D2) of 36%. The significantly positive relationship (ρ<0.05) between the soil-adjusted vegetation index and malaria distribution at all buffer distances suggests that malaria vector (Anopheles arabiensis) prefer productive and greener vegetation. The significant negative relationship between water/moisture index (a1 index) and malaria distribution in buffer distances of 0.5, 10, and 20km suggest that malaria distribution increases with a decrease in shortwave reflectance signal. The study has shown that suitable habitats of malaria vectors are generally found within a radius of 10km in semi-arid environments, and this insight can be useful to aid efforts aimed at putting in place evidence-based preventative measures against malaria infections. Furthermore, this result is important in understanding malaria dynamics under the current climate and environmental changes. The study has also demonstrated the use of Landsat data and the ability to extract environmental conditions which favour the distribution of malaria vector (An. arabiensis) such as the canopy moisture content in vegetation, which serves as a surrogate for rainfall.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.