Abstract

ABSTRACTWe synthesized 2,5‐furandicarboxylate esters [i.e., dibutylfuran‐2,5‐dicarboxylate, diisoamylfuran‐2,5‐dicarboxylate, and di(2‐ethylhexyl)furan‐2,5‐dicarboxylate] and investigated their potential application as plasticizers of commercial poly(vinyl chloride) (PVC) products. Fourier transform infrared analysis, mechanical tests, scanning electron microscopy investigation, differential scanning calorimetry analysis, dynamic mechanical thermal analysis, thermogravimetric analysis (TGA), melt flow rate (MFR) measurement, and plasticizer migration measurements were used to the evaluate the comprehensive properties of the blended products. The results of the tensile tests demonstrate that the blends exhibited antiplasticization and flexible plastic characteristics at 10 and 50 phr in PVC, respectively. Moreover, flexural and impact test data indicate that the three types of blends exhibited a similar tendency: the hardness decreased continuously as the amount of plasticizer increased. Their morphology indicated that all of the plasticizers had good compatibility with PVC. The resulting glass‐transition temperature of the investigated plasticizers was lower than that of pure PVC, and reduction was largest for the plasticizer with the highest molecular weight. TGA revealed that the thermal degradation of blended polymers occurred in three stages and that all of the blends were stable up to 180°C. Finally, the MFRs of all of the specimens indicated that the addition of a higher concentration of lower molecular weight biobased esters resulted in improved fluidity, but these compounds migrated more easily from the blends. Hence, 2,5‐furandicarboxylic acid derived from biomass has potential as a plasticizer. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 40938.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call