Abstract

AbstractSurface soil moisture dynamics is a key link between climate fluctuation and vegetation dynamics in space and time. In East Asia, precipitation is concentrated in the short monsoon season, which reduces plants water availability in the dry season. Furthermore, most forests are located in mountainous areas because of high demand for agricultural land, which results in increased lateral water flux and uneven distribution of plant available water. These climatic and topographic features of the forests make them more vulnerable to drought conditions. In this study, the eco‐hydrological model (Regional Hydro‐Ecological Simulation System) is validated with various water and carbon flux measurements in a small catchment in Korea. The model is then extended to the regional scale with fine‐resolution remote sensing data to evaluate the Moderate Resolution Imaging Radiometer (MODIS) leaf area index and gross primary productivity (GPP) products. Long‐term model runs simulated severe drought effect in 2001 well, which is clearly shown in the ring increment data. However, MODIS GPP does not capture this drought effect in 2001, which might be from a simplified treatment of water stress in the MODIS GPP algorithm. This study shows that the MODIS GPP products can potentially overestimate carbon uptake specifically during drought conditions driven by soil water stress.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.