Abstract

When a person talks, coughs, or sneezes, respiratory droplets are expelled and inevitably land on several surfaces, representing a route for respiratory disease transmission. Here, face masks act as a barrier by obstructing the passage of droplets during exhalation and inhalation. Being constantly exposed to respiratory events and carrying droplet residue, understanding the evaporation and absorption dynamics for tiny droplets on face masks and the fate of viral particle deposition is necessary to analyze the contamination risk. We explore the ideal design for masks from the interaction of mask surfaces with surrogate respiratory droplets by X-ray microscopy and microtomography. We show that the respiratory droplet survivability is significantly reduced in masks with a hydrophilic surface where absorption takes place, leading to a reduction of the postevaporation droplet residue at the mask surface compared with a hydrophobic surface. The results allow us to propose a better mask layer design dependent on wettability, reducing the risk of contamination from respiratory droplets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call