Abstract
Efficient hydrogen storage is essential for its use as a sustainable energy carrier. Diatomaceous earth, a high-surface-area siliceous geomaterial, shows potential as a physisorption material for hydrogen storage. This study analyzes diatomaceous earth's long-term characteristics when subjected to high-pressure hydrogen injection. The diatomaceous earth was subjected to a hydrogen pressure of 1200 psi for a period of 80 days at room temperature. Neither notable morphological or mineralogical changes were observed. Nevertheless, there was a slight reduction in fine particles and a slight increase in larger particles. The Brunauer-Emmett-Teller (BET) surface area decreased slightly with a significant decrease in pore width. However, the hydrogen adsorption at 77 K temperature was increased significantly (45.5%) after the hydrogen storage test. Moreover, there was a delayed release of molecular water as the temperature increased. These changes suggest that a condensation reaction has occurred involving some of the opal-A silanol groups (Si-O-H), producing molecular water. Bonding through siloxane bridges (Si-O-Si) results in a significant decrease in pore width and increased hydrophobicity (i.e., the interaction between diatomaceous surface and H2 was increased), thereby enhancing hydrogen adsorption capacity. These findings indicate that diatomaceous earth holds promise as a material for hydrogen storage, with the potential for its hydrogen adsorption capacity to improve over time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.