Abstract
Intensity-based likelihood functions in crystallographic applications have the potential to enhance the quality of structures derived from marginal diffraction data. Their usage, however, is complicated by the ability to efficiently compute these target functions. Here, a numerical quadrature is developed that allows the rapid evaluation of intensity-based likelihood functions in crystallographic applications. By using a sequence of change-of-variable transformations, including a nonlinear domain-compression operation, an accurate, robust and efficient quadrature is constructed. The approach is flexible and can incorporate different noise models with relative ease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Acta Crystallographica Section A Foundations and Advances
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.